A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature.
نویسندگان
چکیده
Quantum chemistry-based dipole polarizable and nonpolarizable force fields have been developed for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Molecular dynamics simulations of TATB crystals were performed for hydrostatic pressures up to 10 GPa at 300 K and for temperatures between 200 and 400 K at atmospheric pressure. The predicted heat of sublimation and room-temperature volumetric hydrostatic compression curve were found to be in good agreement with available experimental data. The hydrostatic compression curves for individual unit cell parameters were found to be in reasonable agreement with those data. The pressure- and temperature-dependent second-order isothermal elastic tensor was determined for temperatures between 200 and 400 K at normal pressure and for pressures up to 10 GPa on the 300 K isotherm. Simulations indicate considerable anisotropy in the mechanical response, with modest softening and significant stiffening of the crystal with increased temperature and pressure, respectively. For most properties the polarizable potential was found to yield better agreement with available experimental properties.
منابع مشابه
Multiple Reaction Pathways in Shocked 2,4,6-Triamino-1,3,5-trinitrobenzene Crystal
Detonation processes probed with atomistic details have remained elusive due to highly complex reactions in heterogeneous shock structures. Here, we provide atomistic details of the initial reaction pathways during shock-induced decomposition of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) crystal using large reactive molecular dynamics simulations based on reactive force fields. Simulation resu...
متن کاملAnion˗π and Intramolecular Hydrogen Bond Interactions in the Various Complexes of 1,3,5-Triamino-2,4,6-trinitrobenzene with H-, F-, Cl- and Br- Anions
The quantum chemical calculations were performed to investigate the interplay between the anion˗π and intramolecular hydrogen bond (IMHB) interactions in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene (ANB) with Hˉ, Fˉ, Clˉ and Brˉ anions. For better understanding the cooperative effects, the parent molecules (ANB) and the corresponding complexes of 1,3,5˗trinitrobenzene with the...
متن کاملTATB Interaction with Carbon Nanocone and Nanocone Sheet: A Comprehensive Computational Study
In this study 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) interaction with carbon nanocone(NC) and nanocone Sheet (NCS) was evaluated by density functional theory. The calculated thermodynamic parameters including Gibbs free energy changes and Enthalpy alterations showed the interaction of TATB with the both nanostructures are exothermic, spontaneous, experimentally possible ...
متن کاملCarbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation ...
متن کاملسنتز 5،3،1-تری آمینو2،4،6-تری نیترو بنزن کاتالیز شده بوسیله هترو پلی اسیدها(علمی-پژوهشی)
Abstract: The aim of this research is to provide a convenient and relatively inexpensive preparation method for synthesis of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). TATB is a reasonably powerful explosive in which ts thermal and shock stability is considerably greater than that of any other known energetic material. It is used in military applications because of its significant insensitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 22 شماره
صفحات -
تاریخ انتشار 2009